

The new high-performance module Q.PEAK DUO L-G5.2 is the ideal solution for commercial and utility applications thanks to a combination of its innovative cell technology Q.ANTUM and cutting edge cell interconnection. This 1500 V IEC/UL solar module with its 6 busbar cell design ensures superior yields with up to 395 Wp while having a very low LCOE.

LOW ELECTRICITY GENERATION COSTS

Higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to 19.9%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behavior.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology 1 , Hot-Spot Protect and Traceable Quality Tra. Q^{TM} .

EXTREME WEATHER RATING

High-tech aluminum alloy frame, certified for high snow (5400 Pa) and wind loads (2400 Pa).

A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty².

- APT test conditions according to IEC/TS 62804-1:2015, method B (-1500 V, 168 h)
- See data sheet on rear for further information.

THE IDEAL SOLUTION FOR:

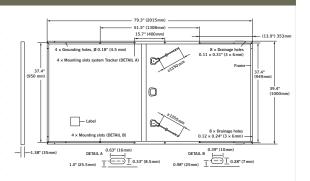
at	$79.3 \text{in} \times 39.4 \text{in} \times 1.38 \text{in (including frame)}$
	$(2015\mathrm{mm}\times1000\mathrm{mm}\times35\mathrm{mm})$

Weight 51.8 lbs (23.5 kg)

Front Cover 0.13 in (3.2 mm) thermally pre-stressed glass with anti-reflection technology

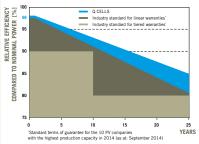
Back Cover Composite film

Frame Anodized aluminum


Cell 6×24 monocrystalline Q.ANTUM solar half-cells

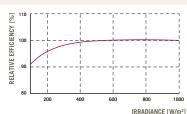
Junction box 2.76-3.35 in $\times 1.97-2.76$ in $\times 0.51-0.83$ in (70-85 mm $\times 1.97-2.76$ in $\times 0.51-2.83$ in (70-85 mm $\times 1.97-2.76$ in $\times 0.51-2.83$ in (70-85 mm $\times 1.97-2.76$ in $\times 0.51-2.83$ in (70-85 mm $\times 1.97-2.76$ in $\times 0.97-2.76$ in $\times 0.97-2$

2.76-3.35 in \times 1.97-2.76 in \times 0.51-0.83 in (70-85 mm \times 50-70 mm \times 13-21 mm), Protection class IP67, with bypass diodes


Cable 4 mm² Solar cable; (+) ≥53.1 in (1350 mm), (-) ≥53.1 in (1350 mm)

Connector Multi-Contact MC4-EVO2, JMTHY PV-JM601A, IP68 or Renhe 05-6, IP67

CTRICAL CHARACTERISTICS							
ER CLASS			380	385	390	395	
MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC ¹ (POWER TOLERANCE +5 W / -0 W)							
Power at MPP ¹	\mathbf{P}_{MPP}	[W]	380	385	390	395	
Short Circuit Current ¹	I _{sc}	[A]	10.05	10.10	10.14	10.19	
Open Circuit Voltage ¹	\mathbf{V}_{oc}	[V]	47.95	48.21	48.48	48.74	
Current at MPP	I _{MPP}	[A]	9.57	9.61	9.66	9.70	
Voltage at MPP	\mathbf{V}_{MPP}	[V]	39.71	40.05	40.38	40.71	
Efficiency ¹	η	[%]	≥18.9	≥19.1	≥19.4	≥19.6	
MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT ²							
Power at MPP	\mathbf{P}_{MPP}	[W]	283.9	287.6	291.3	295.1	
Short Circuit Current	I _{sc}	[A]	8.10	8.14	8.17	8.21	
Open Circuit Voltage	V _{oc}	[V]	45.12	45.37	45.62	45.87	
Current at MPP	I _{MPP}	[A]	7.53	7.57	7.60	7.64	
Voltage at MPP	\mathbf{V}_{MPP}	[V]	37.69	38.01	38.33	38.64	
	ER CLASS MUM PERFORMANCE AT STANDARD TEST CONDITI Power at MPP¹ Short Circuit Current¹ Open Circuit Voltage¹ Current at MPP Voltage at MPP Efficiency¹ MUM PERFORMANCE AT NORMAL OPERATING CON Power at MPP Short Circuit Current Open Circuit Voltage Current at MPP	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ Power at MPP¹ PMPP Short Circuit Current¹ Isc Open Circuit Voltage¹ Voc Current at MPP Voltage at MPP VMPP Efficiency¹ n MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, N Power at MPP PMPP Short Circuit Current Isc Open Circuit Voltage Voc Current at MPP Isc Open Circuit Voltage Voc Current at MPP Isc Open Circuit Voltage Voc	ER CLASS MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLER Power at MPP¹ PMPP [W] Short Circuit Current¹ Isc [A] Open Circuit Voltage¹ Voc [V] Current at MPP IMPP [A] Voltage at MPP VMPP [V] Efficiency¹ η [%] MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Power at MPP PMPP [W] Short Circuit Current Isc [A] Open Circuit Voltage Voc [V] Current at MPP IMPP [A]	MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE $+5$ W $/ - 0$ W) Power at MPP¹	ER CLASS 380 385 MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5 W / $-$ 0 W) Power at MPP¹ PMPP [W] 380 385 Short Circuit Current¹ I $_{SC}$ [A] 10.05 10.10 Open Circuit Voltage¹ V $_{0C}$ [V] 47.95 48.21 Current at MPP I $_{MPP}$ [A] 9.57 9.61 Voltage at MPP V $_{MPP}$ [V] 39.71 40.05 Efficiency¹ η [%] \geq 18.9 \geq 19.1 MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Power at MPP PMPP [W] 283.9 287.6 Short Circuit Current I_{SC} [A] 8.10 8.14 Open Circuit Voltage V $_{0C}$ [V] 45.12 45.37 Current at MPP I $_{MPP}$ [A] 7.53 7.57	ER CLASS 380 385 390 MUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5W / − OW) Volume 1 MPP¹ PMPP [W] 380 385 390 Short Circuit Current¹ I _{SC} [A] 10.05 10.10 10.14 Open Circuit Voltage¹ V _{OC} [V] 47.95 48.21 48.48 Current at MPP I _{MPP} [A] 9.57 9.61 9.66 Voltage at MPP V _{MPP} [V] 39.71 40.05 40.38 Efficiency¹ η [%] ≥18.9 ≥19.1 ≥19.4 MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Power at MPP PMPP [W] 283.9 287.6 291.3 Short Circuit Current I _{SC} [A] 8.10 8.14 8.17 Open Circuit Voltage V _{OC} [V] 45.12 45.37 45.62 Current at MPP I _{MPP} [A] 7.53 7.57 7.60	


Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organization of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}\text{C},\ 1000\,\text{W/m}^2).$

TEMPERATURE COEFFICIENTS

Temperature Coefficient of I _{sc}	α	[%/K]	+0.04	Temperature Coefficient of \mathbf{V}_{oc}	β	[%/K]	-0.28
Temperature Coefficient of P_{MPP}	γ	[%/K]	-0.37	Normal Operating Module Temperature	NMOT	[° F]	109 ±5.4 (43 ±3°C)

PROPERTIES FOR SYSTEM DESIGN						
Maximum System Voltage V _{sys}	[V]	1500 (IEC) / 1500 (UL)	Safety Class	II		
Maximum Series Fuse Rating	[A DC]	20	Fire Rating	C (IEC) / TYPE 1 (UL)		
Max. Design Load, Push / Pull (UL) ²	[lbs/ft²]	75 (3600 Pa) / 33 (1600 Pa)	Permitted module temperature on continuous duty	-40° F up to $+185^{\circ}$ F (-40° C up to $+85^{\circ}$ C)		
Max. Test Load. Push / Pull (UL)2	[lhs/ft²]	113 (5400 Pa) / 50 (2400 Pa)	² see installation manual			

QUALIFICATIONS AND CERTIFICATES PACKAGING INFORMATION UL 1703; CE-compliant; IEC 61215:2016, IEC 61730:2016 application class A Number of Modules per Pallet Number of Pallets per 53' Trailer 26 Number of Pallets per 40' High Cube Container 22 Pallet Dimensions (L x W x H) 81.9 in x 45.3 in x 46.7 in (2080 mm x 1150 mm x 1185 mm)

Pallet Weight 1635 lbs (742 kg)

NOTE: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Hanwha Q CELLS America Inc.